
Software Engineering

and Architecture

Concurrency

Producer Consumer

Recap

• The three categories of concurrent programs

– Independent threads

• Like running your Media player program while coding in IntelliJ

– Shared resources

• Like two threads reading/writing to the same account object

• Typical case: web servers handling resources

– You cannot book the same train seat twice!

– Collaborating processes

• Like one thread inserting into a buffer and assuming some other

thread will remove those items from the buffer

CS@AU Henrik Bærbak Christensen 2

Collaborating Threads

• The last, and most challenging, class of concurrent

programs is collaborating processes

• The typical example is the Producer Consumer

• For instance

– Printer queue; high volume web traffic; disk read/write; …

CS@AU Henrik Bærbak Christensen 3

Producer Buffer Consumer

Buffer

• Producer(s) and Consumer(s) are threads, and

• Our Buffer (queue) class has methods

– synchronized void store(Object o) Insert ‘o’ into buffer

– synchronized Object retrieve() Retrieve ‘o’ from buffer

• Both must be critical regions - guarded by Lock or

synchronized

• Consider the ‘consumer’ that wants to retrieve the next

item ‘o’ to process it

– But if there is no item in the queue, it of course has to wait until

there is an item available; that is, a producer has stored

something into the queue…

CS@AU Henrik Bærbak Christensen 4

Waiting for item to be available

• Waiting for item ‘o’ to become available

• Let us analyze our options…

CS@AU Henrik Bærbak Christensen 5

Buffer Consumer

?

Waiting for ‘o’

• So, how do we arrange to wait for the item?

– In the consumer code

• Call ‘retrieve()’ repeatedly until it returns a non-null value

• This is called polling (busy waiting), and wastes a lot of CPU cycles

on nothing

• … And there is a waiting time from item available to processing

• Similar to picking up the phone every 1 minute to see if

any has called you …

– Wasting a lot of time and resources 

CS@AU Henrik Bærbak Christensen 6

Buffer Consumer

?

Waiting for ‘o’

• So, how do we arrange to wait for the item?

– In the queue code’s retrieve() method

• Wait inside – but hey! It is a critical region and thus no producer can

ever enter the ‘store()’ method’s critical region 

• Deadlock

– A thread waits infinitely for an event that will never happen

CS@AU Henrik Bærbak Christensen 7

Buffer Consumer

Deadlock

• Repeat (as it is important!)

• We would like to wait in the queue code

– retrieve() is called and then just returns when there is item

available

• But we cannot because

– retrieve() will take the ‘lock’ on the object and thus no other

thread will ever be able to call the method store()

• Waiting for the lock outside…

CS@AU Henrik Bærbak Christensen 8

So We Want…

• … a mechanism that

– awaits that a

condition becomes

true

– Let other threads

acquire the lock so

they can make

that condition true

CS@AU Henrik Bærbak Christensen 9

class Queue {
Object p;
boolean empty = true;

public synchronized Object retrieve() {
await (!empty);
empty = true;
return p;

}

public synchronized void store(Object p) {
await (empty);
this.p = p; empty = false;

}
}

Not Java code!

Example

• Scenario

– C call retrieve()

• Takes lock

• Empty == true

• Release lock and

• Enter Waiting state

– P calls store()

• Takes lock

• No wait (empty)

• Finish and release lock

• Later: Scheduler force P

into ready state (not running)

– C enters ‘running’ state

• Takes lock

• Empty = false!

• Finish and release lock

CS@AU Henrik Bærbak Christensen 10

class Queue {
Object p;
boolean empty = true;

public synchronized Object retrieve() {
await (!empty);
empty = true;
return p;

}

public synchronized void store(Object p) {
await (empty);
this.p = p; empty = false;

}

}

! true => ‘await’

Example

• Scenario

– C call retrieve()

• Takes lock

• Empty == true

• Release lock and

• Enter Waiting state

– P calls store()

• Takes lock

• No await (empty == true)

• Toggle empty and release lock

• Later: Scheduler force P

into ready state (not running)

– C enters ‘running’ state

• Takes lock

• Empty = false!

• Finish and release lock

CS@AU Henrik Bærbak Christensen 11

class Queue {
Object p;
boolean empty = true;

public synchronized Object retrieve() {
await (!empty);
empty = true;
return p;

}

public synchronized void store(Object p) {
await (empty);
this.p = p; empty = false;

}

}

true => continue

Example

• Scenario

– C call retrieve()

• Takes lock

• empty == true

• Release lock and

• Enter Waiting state

– P calls store()

• Takes lock

• No await (empty == true)

• Toggle empty and release lock

• Later: Scheduler force P

into ready state (not running)

– C enters ‘running’ state

• Takes lock

• No await (empty == false)

• Finish and release lock

CS@AU Henrik Bærbak Christensen 12

class Queue {
Object p;
boolean empty = true;

public synchronized Object retrieve() {
await (!empty);
empty = true;
return p;

}

public synchronized void store(Object p) {
await (empty);
this.p = p; empty = false;

}

}

true => continue

Java Primitives (Java 1.4)

• Java objects maintain a wait-set in addition to the lock

– a.wait() does atomically

• Force current thread into waiting state,

• Add current thread in object’s wait-set

• Release the lock on the object, a

– a.notify() does

• Choose one random thread, T, in a’s wait-set

• T must take the lock on ‘a’

– May fail if another thread has already taken the lock!

• T resumes execution (becomes runnable) from the wait() statement

– a.notifyAll() does

• The same except all threads in a’s wait-set become ‘runnable’…

CS@AU Henrik Bærbak Christensen 13

a

Java 1.4 Code

CS@AU Henrik Bærbak Christensen 14

Java 1.4 Code

CS@AU Henrik Bærbak Christensen 15

Why a loop around
wait() ???

Note

• The wait-set only makes sense inside a critical region

– You cannot call ‘wait()’ or ‘notify()’ if you are not in a synchronize

method / critical region

– Will throw exceptions at your if you try…

CS@AU Henrik Bærbak Christensen 16

Demo

CS@AU Henrik Bærbak Christensen 17

Java 5 Onwards

Critique

• Java was the first mainstream language to have internal

threading

• Brink Hansen should have said that all his whole lifelong

research into concurrency was a complete waste 

• Morale: It had to be improved…

– Package: java.util.concurrent

– Much more fine-grained concurrency control

– A lot of default implementations without bugs!

CS@AU Henrik Bærbak Christensen 19

Java 1.5 Code

CS@AU Henrik Bærbak Christensen 20

The Lock

Two different wait-
sets associated…

Now, producers are waiting in
one wait-set; while consumers
are in another! We are sure to

signal the right one!

And Even More Easy!

• It is already implemented !

CS@AU Henrik Bærbak Christensen 21

Moving On…

Vast Subject Area

• Lots of properties of concurrent programs

– Liveliness

– Fairness

– Starvation

– Deadlocks

– Performance / blocked threads

– Thread priority

• And library support

– Java Collection classes are not thread safe 

– But Decorators exists

• List newList = Collections.synchronizedList(oldList);

CS@AU Henrik Bærbak Christensen 23

Vast Subject Area

• And Parallelism – the other side of concurrency

– Java Stream processing

• Runs concurrently if you use parallelStream()

• Map-Reduce

– Why not use 1.000 machines

to compute ‘f’?

• And on, and on, and on…

CS@AU Henrik Bærbak Christensen 24

