/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Concurrency
Producer Consumer

/v Recap

AARHUS UNIVERSITET

* The three categories of concurrent programs
— Independent threads
 Like running your Media player program while coding in IntelliJ
— Shared resources

 Like two threads reading/writing to the same account object

» Typical case: web servers handling resources
— You cannot book the same train seat twice!

— Collaborating processes

« Like one thread inserting into a buffer and assuming some other
thread will remove those items from the buffer

CS@AU Henrik Baerbak Christensen 2

/v Collaborating Threads

AARHUS UNIVERSITET

« The last, and most challenging, class of concurrent
programs is collaborating processes

« The typical example is the Producer Consumer

Buffer » consumer

\ 4

Producer

* For instance
— Printer queue; high volume web traffic; disk read/write; ...

V4V Buffer

AARHUS UNIVERSITET
* Producer(s) and Consumer(s) are threads, and

« Our Buffer (queue) class has methods
— synchronized void store(Object 0) Insert ‘0’ into buffer
— synchronized Obiject retrieve() Retrieve ‘0’ from buffer

« Both must be critical regions - guarded by Lock or
synchronized

» Consider the ‘consumer’ that wants to retrieve the next
item ‘0’ to process it
— But if there is no item in the queue, it of course has to wait until

there is an item available; that is, a producer has stored
something into the queue...

/v Waiting for item to be available

AARHUS UNIVERSITET
« Waiting for item ‘0’ to become available

Buffer » consumer

* Let us analyze our options...

CS@AU Henrik Baerbak Christensen 5

Y Waiting for ‘o’

AARHUS UNIVERSITET
« S0, how do we arrange to wait for the item?

?

\ 4

consumer

— In the consumer code Buffer
« Call ‘retrieve()’ repeatedly until it returns a non-null value

« This is called polling (busy waiting), and wastes a lot of CPU cycles
on nothing

» ... And there is a waiting time from item available to processing
e Similar to picking up the phone every 1 minute to see If
any has called you ...

— Wasting a lot of time and resources ®
CS@AU Henrik Baerbak Christensen 6

/v Waiting for ‘o’

AARHUS UNIVERSITET
« S0, how do we arrange to wait for the item?

\ 4

Buffer

consumer

— Inthe queue code’s retrieve() method

« Wait inside — but hey! It is a critical region and thus no producer can
ever enter the ‘store()’ method’s critical region &

CS@AU Henrik Baerbak Christensen 7

VeV Deadlock

AARHUS UNIVERSITET
 Repeat (as it is important!)
« We would like to walit in the queue code

— retrieve() is called and then just returns when there is item
available

 But we cannot because

— retrieve() will take the ‘lock’ on the object and thus no other
thread will ever be able to call the method store()

» Waiting for the lock outside...

public synchronized void store(int item) throws InterruptedException {

public synchronized int retrieve() throws InterruptedException {

CS@AU Henrik Baerbak Christensen 8

/v

So We Want...

AARHUS UNIVERSITET

CS@AU

. @ mechanism that

' |
awaits that a class Queue {

condition becomes ©Object p;
true boolean empty = true;

public synchronized Object retrieve() {
await (l'empty);

Let o_ther threads empty = true:

acquire the lock so return p;

they can make }

that condition true
public synchronized void store(Object p) {

await (empty);
this.p = p; empty = false;
}
¥

Henrik Baerbak Christensen 9

/v Example

AARHUS UNIVERSITET
e Scenario
(— C call retrieve()) C1aSS_ Queue {
Takes lock Object p;
Empty == true boolean empty = true;
Release lock and
\. : E”terwa‘“”@\(pubﬁc synchronized oObject retrieve() {
— P calls store() ™ await (lempty); Y
. Takes_lock empty = true;
* No wait (empty) return p;
Finish and release lock } ’
Later: Scheduler force P \. J
into ready state (not running)]]]]
_ C enters ‘running’ state public synchronized void store(Object p) {
Takes lock await (empty);
Empty = false! this.p = p; empty = false;
Finish and release lock }
}

CS@AU Henrik Baerbak Christensen 10

Y Example

AARHUS UNIVERSITET
« Scenario
— C call retrieve() C1aSS_ Queue {
Takes lock Object p;
Empty == true boolean empty = true;
Release lock and
Enter Waiting state public synchronized Object retrieve() {
(" — P calls store() N await (lempty);
» Takes lock empty = true;

Toggle empty and release lock
Later: Scheduler force P

No await (empty == true) \ return p;
)

\ into ready state (not runningw 4] _ _ _ R
=T enters Tunning state puvblic synchronized void store(Object p)
Takes lock await (empty);

Empty = false! this.p = p; empty = false;

Finish and release lock }
G J
}

CS@AU Henrik Baerbak Christensen 11

/v Example

AARHUS UNIVERSITET
« Scenario
— C call retrieve() C1aSS_ Queue {
. Takes lock Object p;
- empty == true boolean empty = true;
* Release lock and
* Enter Waiting state public synchronized object retrieve() {)
- Paallsstore(await (lempty);
+ Takes lock empty = true;
No await (empty == true) return p;
Toggle empty and release lock } ’
Later: Scheduler force P J
into ready state (not running)]]] i
(" _ C enters ‘running’ state public synchronized void store(Object p) {
Takes lock await (empty);
No await (empty == false) this.p = p; empty = false;
Finish and release lock }
g
}

CS@AU Henrik Baerbak Christensen 12

/v Java Primitives (Java 1.4)

AARHUS UNIVERSITET

« Java objects maintain a wait-set in addition to the lock

— a.wait() does atomically
» Force current thread into waiting state,
» Add current thread in object’s wait-set
» Release the lock on the object, a

— a.notify() does
 Choose one random thread, T, in a’s wait-set

» T must take the lock on ‘a’
— May fail if another thread has already taken the lock!

« T resumes execution (becomes runnable) from the wait() statement

— a.notifyAll() does
* The same except all threads in a’s wait-set become ‘runnable’...

d

VeV Java 1.4 Code

AARHUS UNIVERSITET

class BufferJavald implements Buffer {
public Bufferlavald() {
System.out.println("=== Using BufferJava 1.4 ===");
System.out.println();
}

private b
private]

// Wa Fil e bu - is free, then fill it.
publ] oid store{int item) throws InterruptedException
while(!empty)

{a the buffer being empty.
wait();

I

thic itam — ditem; empty = false;

notiftyAll();

ty) {

// Retrieve the item before we i
int item = this.item; empty = trus
notityAll();
return item;

CS@AU 14

VeV Java 1.4 Code

AARHUS UNIVERSITET

class BufferJavald implements Buffer {
public BufferJavald() {
System.out.println(“=== Using BufferJava 1.4 ===");
System.out.println();
}

private boolean empty = true;
private int item;

Why a loop around

ait until the buffer is free, then fill it.

Vvait() ??y? publlc synchrﬂnlzed void store(int item) throws InterruptedException {
whlle('empty} {

be notified of the buffer being empty.
walt{}
}
this.item = item; empty = false;
notityAll();
}

public synchronized int retrieve() throws InterruptedException {

while(empty) {

// Wait to be notified of an item becoming

wait();
b .
// Retrieve the item before we "ﬂi;Ty wal
int item = this.item; empty = true
notlfyhll{}
return item;

eV Note

AARHUS UNIVERSITET
« The wait-set only makes sense inside a critical region

— You cannot call ‘wait()’ or ‘notify()’ if you are not in a synchronize
method / critical region

— Will throw exceptions at your if you try...

eV Demo

AARHUS UNIVERSITET

File Edit Tabs Help

public statlc v01d maln(Stllng[] args) throws InterruptedExceptlon {

// The bu shared between the producer
Buffer b
new BuffexJavalJ()

Thread producer = new Thread(new Producer(b));
Thread consumer new Thread(new Consumer(b));

consumer.start();
producer.start();

CS@AU Henrik Baerbak Christensen 17

/v

AARHUS UNIVERSITET

Java 5 Onwards

/v

Critique
AARHUS UNIVERSITET
« Java was the first mainstream language to have internal
threading

* Brink Hansen should have said that all his whole lifelong
research into concurrency was a complete waste ®

* Morale: It had to be improved...
— Package: java.util.concurrent
— Much more fine-grained concurrency control
— Alot of default implementations without bugs!

/v

AARHUS UNIVERSITET

Java 1.5 Code

class BufferldavalSLock implements Buffer {
Lock lock = new ReentrantLock();
Condition isFull = lock.newCondition();
Condition isEmpty = lock.newCondition();

public int retrieve() throws InterruptedException {

int returnvalue = -1;
lock.lock();
try {
while (empty) {
isFull.await();

}

returﬁvélﬁe = itéﬁ;
empty = true;
iSEmﬁty.éiﬁnaligi_
} finally {
lock.unlock():
}

return returnvalue:

Two different wait-
sets associated...

Now, producers are waiting in

one wait-set; while consumers

are in another! We are sure to
signal the right one!

public synchronized void store(int item) throws InterruptedException {

lock.lock();

try {
while ('empty) {

isEmpty.await();

empty = false;

isFuil.signal(); :

} fimally {
lock.unlock();

Henrik Beerbak (il

/v And Even More Easy!

AARHUS UNIVERSITET

« Itis already implemented !

class BufferBlockingQueue implements Buffer {

private BlockingQueue<Integer> buffer =
new ArrayBlockingQueue<Integer>(1);

public int retrieve() throws InterruptedException {
return buffer.take();

}

public void store(int item) throws InterruptedException {
buffer.put(item);
}

CS@AU Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET

Moving On...

/v Vast Subject Area

AARHUS UNIVERSITET

» Lots of properties of concurrent programs
— Liveliness
— Fairness
— Starvation
— Deadlocks
— Performance / blocked threads
— Thread priority
* And library support

— Java Collection classes are not thread safe ®

— But Decorators exists
 List newList = Collections.synchronizedList(oldList);

/v

Vast Subject Area
AARHUS UNIVERSITET

« And Parallelism — the other side of concurrency
— Java Stream processing

* Runs concurrently if you use parallelStream()

Collection

A\
db. orders.mapReduce(
map — function() { emit(this.cust_id, this.amount); }

un H B
reduce — function(key, values) { return Array.sum(values) }
 Map-Reduce {

query — query: { status: "A" },
output > out: "erder_totals”

— Why not use 1.000 machines 2
to compute f'?

!

status: "A"

« Andon,andon,andon... | | ==

order_totals

Report a Probl
orders

CS@AU Henrik Baerbak Christensen 24

